Etiketter

Leta i den här bloggen

söndag 14 februari 2016

FXR ja pravastatiini

http://www.ncbi.nlm.nih.gov/pubmed/24463082
Pravastatiini on vesiliukoinen, päinvastoin kuin muut statiinit.

BACKGROUND: 

  Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, liver X receptor alpha (LXRalpha), farnesoid X receptor (FXR), ABCG5, ABCG8, and 7alpha-hydroxylase (CYP7A1) which are directly involved in the cholesterol saturation index in bile.

METHODS: Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARalpha and PPARgamma was measured by Western blotting analysis, and the mRNA expression of LXRalpha, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR.

RESULTS: In cultured Hep3B cells, pravastatin activated PPARalpha and PPARgamma protein expression, induced stronger expression of PPARgamma than that of PPARalpha, increased LXRalpha mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRalpha, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARgamma and LXRalpha pathways, together or independently.

CONCLUSION: Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRalpha and CYP7A1 in human hepatocytes.

PMID:
24463082
[PubMed - indexed for MEDLINE]
Free full text.
Toinen lähde:  

J Gastroenterol Hepatol. 2011 Oct;26(10):1544-51. doi: 10.1111/j.1440-1746.2011.06748.x.
  • Pravastatin modulates liver bile acid and cholesterol homeostasis in rats with chronic cholestasis. Kolouchova G1, Brcakova E,  et al.

BACKGROUND AND AIM: The administration of pravastatin to patients with cholestatic liver disease has suggested the potential of the drug with regard to reducing raised plasma cholesterol and bile acid levels. Information about the mechanisms associated with this effect is lacking. Thus, the aim of the present study is to evaluate pravastatin effects on the liver bile acid and cholesterol homeostasis in healthy and cholestatic rats.

METHODS: Control sham-operated and reversibly bile duct-obstructed (BDO) rats were treated with pravastatin (1 or 5 mg/kg) or the vehicle alone for 7 days after surgery.

RESULTS: Lower doses of pravastatin reduced bile acid plasma concentrations in cholestatic animals. The effect was associated with reduced liver mRNA expression of Cyp7a1, Cyp8b1, Mrp2, Ugt1a1 and the increased expression of Bsep (Abcb11) 

 In addition, BDO-induced increase in the liver content of cholesterol was normalized by pravastatin. The change was accompanied by the reduced liver expression of Hmg-CoA reductase, LDL receptor, and Acat2, and induced the expression of Abca1 and Mdr2. These changes corresponded with the upregulation of nuclear receptors LXRα and PPARα, and the downregulation of FXR, CAR, SREBP-2 (sterol regulatory element.binding protein ) and HNF1α (Hepatic Nuclear Factor).

 High doses of pravastatin lacked any positive effects on bile acids and cholesterol homeostasis, and blocked bile formation through the reduction of the biliary excretion of bile acids.

CONCLUSIONS: Pravastatin rendered a positive reduction in BDO-induced increases in plasma bile acid concentrations and cholesterol liver content, mainly through the transcriptionally-mediated downregulation of genes involved in the synthesis of these compounds in the liver.

© 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

Comment in

FXR ja statiini

http://circ.ahajournals.org/content/130/Suppl_2/A15690.abstract

Statins as Potential Farnesoid X Receptor Modulators in Atrial Cardiomyocytes: A Gender, Age and miR328 Controlled Response

Abstract

... Farnesoid X receptor (FXR) plays an important role in lipid and glucose metabolism and statins are known negative regulators of FXR expression. The role of FXR in atrial fibrillation (AF) has not been defined. MicroRNA-328 (miR-328) a small non-coding RNA contributes to adverse electrical remodeling in AF a common complication after coronary artery bypass grafting (CABG). The present study aimed to examine the levels of FXR mRNA and miR328 in 30 consecutive patients undergoing CABG.
Post reperfusion, mean (S.E.) FXR mRNA levels increased
adjusted the results for the combined confounding effect of age, gender and statin therapy.
...FXR mRNA post-pre CABG in patients under statin therapy were -2.6 units lower (95% C.I.-4.43,-0.80) than in patients not taking statins (p=0.007).
 Each additional year of age results in FXR mRNA being 0.27 units higher (95% C.I. 0.04, 0.48) (p=0.018). Female patient FXR mRNA was 2.10 units higher (95% C.I. 0.12, 4,09) than their male counterparts
... These results suggest that FXR regulation during CABG is dependent on statin therapy, is gender specific and increases with age. Also the inverse relation of FXR mRNA with miR-328 suggests a possible interplay between metabolic and electrical substrate alterations for the atrial myocardium during CABG.

fredag 12 februari 2016

FXR Gene

http://www.ncbi.nlm.nih.gov/gene/9971
Official Symbol
NR1H4provided by HGNC
Official Full Name
nuclear receptor subfamily 1 group H member 4provided by HGNC
Primary source
HGNC:HGNC:7967
See related
Ensembl:ENSG00000012504; HPRD:04827; MIM:603826; Vega:OTTHUMG00000170359
Gene type
protein coding
RefSeq status
REVIEWED
Organism
Homo sapiens
Lineage
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo
Also known as
BAR; FXR; HRR1; HRR-1; RIP14
Summary
This gene encodes a ligand-activated transcription factor that shares structural features in common with nuclear hormone receptor family members. This protein functions as a receptor for bile acids, and when bound to bile acids, binds to DNA and regulates the expression of genes involved in bile acid synthesis and transport. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Feb 2016]
Orthologs Hiiri

GeneRIFs: Gene References Into FunctionsWhat's a GeneRIF?


Väitöskirja sappiaineenvaihduntaan vaikuttavista tekijöistä

https://gupea.ub.gu.se/handle/2077/40886
Kävin kuuntelemassa tämän väitöstilaisuuden 12.2. 2016 Sahlgrenskan Akatemiassa.
Väitöstyöntekijä on  Sama Islam Sayin. (SI. Sayin)  Vastaväittäjänä toimi  Itävallasta Wienin Yliopistosta Michael Trauner.
Väitöskirja perustuu  kahteen osatyöhön. 
I  Ensimmäinen  on julkaistu vuonna 2013 otsikolla Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occuring FXR antagonist. 
Tässä työryhmässä huomaan myös suomalaisia  olleen mukana kuten S. Jäntti, T. Hyötyläinen. 
II Toinenn työ: Differential FXR-mediated regulation by the gut microbiota in the liver and the intestine.
 
Suomennosta ruotsalaisesta ja englantilaisesta  abstraktista  

 Tausta: 
Suolistoflora, suolistossamme elävä mikrobien moninainen kokoomus on ympäristötekijä, jolla on syvällistä suoraa  vaikutusta  isäntäkehon ( siis meidän ihmisten) niin terveyteen kuin  tautiin. 

Sappihapot ovat  sisäsyntyisiä, endogeenisiä, kolesteroli-johdannaisia, joita suoliston  mikrobiflora voi  muokata,  ja  ne toimivat signaloivina molekyyleinä ihmisen aineenvaihdunta-prosessien säätelyssä. 
Työn tarkoitus:  
Tässä väitöskirjatyössä tutkitaan suolistokasvuston (suolistofloran) osuutta sappihappojen aineenvaihduntaan ja signalointiin käyttämällä apuna suolistobakteerittomia hiiriä, joita vertailtiin normaaliravinnolla kasvatettuihin  hiiriin, joilla oli suolistofloraa. 

Tulos: 
Havaittiin suolistofloran säätelevän sappihappojen aineen-vaihduntaa usealla tasolla, myös  yksittäisten sappihappolajien osuuksilla  ja sappihappojen homeostaasiin osallistuvien geenien ilmentämisellä.
 Havaittiin, että  erityisesti  suolistomikrobit alensivat  hiiren primäärin sappihapon  tauro-beta-murikoolihapon (T-betaMCA)  pitoisuuksia.  Edelleen tunnistettiin, että tämä  sappihappo toimii  FXR-tumareseptorin estäjänä, siis vastavaikuttajana eli antagonistina. 
  •  FXR on lyhennys sanoista " Farnesoidi X-reseptori," joka on eräs tumareseptori ( nuclear receptor, NR).   
Farnesoidi-x- reseptori ( FXR) välittää negatiivista  takaisinsyöttöä (negative feed back)   sappihappohomeostaasin  säätelyssä;,  FXR  osallistuu useiden   fysiologisten prosessien säätelyyn. 

Tässä työssä  tutkijat tunnistivat  sappihappoaineenvaihdunnan säätelyn taustalla olevan  molekyylitason mekanismin, kuten   T-betaMCA-sappihapon välittämän  FXR -aktiivisuuden  eston eli inhibition.

 Mutta koska ihmisiltä puuttuu vastaava sappihappo  T-betaMCA, niin tällä  väitöstyöllä on eräs tärkeä osa  selitettämässä   hiiritutkimusten ja kliinisten tutkimusten välisiä eroja, kun  suunnataan terapiaa  FXR- reseptorin toiminnan muuntamiseen  hoidettaessa  gastrointestinaalisia tauteja. 

 Jotta  saataisiin  parempaa ymmärtämystä suolistomikrobien  vaikutuksesta FXR- signalointiin, kehitettiin (germ free)  hiiriä, joilta puuttui funktionaalinen FXR ja kartoitettiin FXR:n kautta tapahtuva geenisäätö.
Tutkittiin  FXR:stä  riippuvaisen geeni-ilmenemän säätö suolistosta ja maksasta.  Tutkittiin  tärkeimmät elimet tässä FXR- välitteisessä sappihappoaineenvaihdunnan säätelyssä. Reseptoria FXR ilmenee maksassa hyvin runsaasti. 
 Havaitsimme, että suolistoflora voi säädellä FXR:n  kohdegeenien ilmenemää suoralla FXR-sitoutumisella promottoreihin. 
Mutta maksassa tapahtuu todennäköisesti  proteiini-proteiini- interaktioita   FXR:n ja muiden  koregulaattorien kesken 

Jöhtopäätöksenä: Tämä tutkimus vahvistaa suolistomikrobit avainasemassa olevaksi vaikuttajaksi sappihappojen aineenvaihdunnassa ja FXR- signaloinnissa, jota tapahtuu  suolessa ja maksassa. 
Näistä löydöistä päätellen mikrobit ovat varteenotettava  tekijä,   kun  hoidetaan gastrointestinaalisia tauteja suuntaamalla  sappihappovälitteiseen FXR-signaloinnin  estämiseen.
 


The collection of microbes in our gastrointestinal tract, the gut microbiota, is an environmental factor that has profound impact on host health and disease. Bile acids are endogenous cholesterol-derived molecules that can be modified by the gut microbiota and function as signaling molecules in regulation of host metabolic processes. This thesis investigates the role of the gut microbiota on bile acid metabolism and signaling by comparing mice that lack microbiota with their conventionally-raised counterparts. We found that the gut microbiota regulates bile acid metabolism at several levels, including proportionalities of individual bile acid species and expression of genes involved in bile acid homeostasis. Specifically, the gut microbiota decreased levels of mouse primary bile acid tauro-beta-muricholic acid (T-βMCA), which we identified as an antagonist of the nuclear receptor farnesoid-x-receptor (FXR). FXR mediates negative feedback regulation of bile acid homeostasis, as well as regulation of several physiological processes.
 Hence, we identified the molecular mechanism behind microbial regulation of bile acid homeostasis as T-βMCA mediated inhibition of FXR activity. Since humans lack T-βMCA, this thesis plays an important role in explaining the existing discrepancies between mouse and human studies targeting FXR for treating gastrointestinal diseases. Furthermore, in order to better understand the effect of the microbiota on FXR signaling, we re-derived mice that lacked functional FXR as germ-free and mapped microbial regulation of genes through FXR. We found that the microbiota can regulate expression of FXR target genes through direct FXR binding to promoters in the intestine, while protein-protein interactions between FXR and other co-regulators are likely regulated in the liver.
 In conclusion, this study establishes the microbiota as a key player in bile acid metabolism and FXR signaling in the liver and the intestine. The findings from this thesis implicate the microbiota as an important factor that needs to be taken into consideration in treating gastrointestinal diseases by targeting bile-acid mediated FXR signaling.
ISBN: 978-91-628-9703-1 (PDF)
978-91-628-9702-4 (Print)

söndag 24 januari 2016

Tumakalvo, tumalamina, SREBF1

Structure and function of the nuclear lamina. The nuclear lamina lies on the inner surface of the inner nuclear membrane (INM), where it serves to maintain nuclear stability, organize chromatin and bind nuclear pore complexes (NPCs) and a steadily growing list of nuclear envelope proteins (purple) and transcription factors (pink). Nuclear envelope proteins that are bound to the lamina include nesprin, emerin, lamina-associated proteins 1 and 2 (LAP1 and LAP2), the lamin B receptor (LBR) and MAN1. Transcription factors that bind to the lamina include the retinoblastoma transcriptional regulator (RB), germ cell-less (GCL), sterol response element binding protein (SREBP1), FOS and MOK2. Barrier to autointegration factor (BAF) is a chromatin-associated protein that also binds to the nuclear lamina and several of the aforementioned nuclear envelope proteins. Heterochromatin protein 1 (HP1) binds both chromatin and the LBR. ONM, outer nuclear membrane. Coutinho et al. Immunity & Ageing 2009http://www.ncbi.nlm.nih.gov/pubmed/18435918

Kolesterolin homeostaasista hyvä artikkeli.  Se on pitkä olen itse kahlannut sitä vasta puoleenväliin.

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204063/


Eräs olennainen asia: kolesteroli on erittäin tärkeä molekyyli ihmiselle, koska se kuuluu ihmisen suojaan, kalvojen  suojarakenteeseen. Sen takia keho  tuottaa sitä  joka solullaan tarpeen mukaan.. Ainoa haitta kolesterolin automaattiselle homeostaasille   on käytännölllisesti katsoen se . että ihmiset  syövät sitä valmiissa muodossa liikoja, jolloin se on vain eräs  molekyyli, joka pitää  maksan avulla hävittää ja erittää, koska sitä ei voi käyttää energiaksi  ja polttaa lämmöksi,  se on siksi monimutkainen. - tai sitten  synteesin yksipuolisia raaka-aineita syödään  liikaa  siten että koko geneettiinen  lipidikirjotasapino  järkkyy, koska  kolesterolia syntyy  absoluuttisen  välltämättömänä molekyylinä hyvin perustavista elementeistä joita  tulee sokerista ja  kovasta rasvasta.
Tyydyttämättömät öljyt  ylittävät sen  kynnyksen että ne pelkästään rasittaisivat  ja paisuttaisivat kolesterolisynteesitietä koska niistä voi tulla  tasapainoisesti muita kalvolipidejä.

Varsinainen kolesterolin normalisointi pitäisi alkaa  rafiiknnoidun sokerin ja kovien rasvojen vähentämisestä.  Lisäksi  jos haluaa suojata omaa maksaansa ja sappeansa  valmiin kolesterolin detoksiakaatiokuormalta, ei käytä 1 kananmunaa enempää kolesterolia   päivässä.   Hiven  ravintokolesterolia antaa kyllä  pientä tukea endogeeniselle kolesterolitehtaalle- että sen ei tarvitse käydä  ylikierroksilla.  siis noin 300 mg kolesterolia päivässä , kuten  yhdessä  kananmunassa.

Kaikenlaiset kolesterolia alentavat lääkkeet ovat varmaan hyödyksi koska nykyihmiskutna syö todella aivan järkyttävän  epäfysiologisesti.

Jos niistä kolesterolia alentavista lääkkeistä  tulee lihaskipuja,  se saattaa olla paha merkki.  Ei sovi silloin. Parempi koettaa  järkevöidä ravintoa - tosin  nykyajan ylijärkevä ihmiskunta  menee johtopäätöksissään usein  väärään ja  luonnonkansoilla saattaa olla   siinä suhteessa joitain etuja.  ei kai eläinkunnassakaan ole kolesteroli ja lipidiongelmaa muuta kuin ihmisen hoitamilla eläimillä.


Kolesterolivaikutus tumassa ?

https://www.ncbi.nlm.nih.gov/pubmed/26754536

Lipids Health Dis. 2016 Jan 12;15(1):4. doi: 10.1186/s12944-015-0175-2.
Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains.
Abstract
BACKGROUND:
Diet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition.
METHODS:
We used non-Hodgkin's T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains.

RESULTS:

We found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of β-actin gene and reduction of β-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression.

CONCLUSION:

The results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.
PMID:
26754536
[PubMed - in process]

PMCID:
PMC4709975

Free PMC Article

måndag 12 oktober 2015

Mevalonaatitiestä on uusi väitöskirja

https://gupea.ub.gu.se/handle/2077/39229
Titel: Inhibition of the mevalonate pathway in C. elegans: Consequences and implications
Författare: Ranji, Parmida

Tämä on niin mielenkiintoinen aihe, olen pohtinut monta kertaa miten ihmeessä voidaan estää mevalonaattitietä ilman seuraamuksia. Katsataan mitä tämä antaa tämä thesis.  Tämä on jolloin C.Elegansilla tehty
Wikipedia näyttää siitä hahmon:
 https://fi.wikipedia.org/wiki/Caenorhabditis_elegans

MEVALONAATTI -tie vastaa ihmisessä  kolesterolin syntetisoimisesta ja sen ohella  monesta tärkeästä biomolekyylistä, kuten  Q10, koentryymi Q:sta, joka on mitokondriassa elektronitransporttiketjun komponentti , dolikoleista ( jotka ovat  tärkeitä N-linkin tekevässä proteiinin glykosylaatiossa) ja isoprenoidesita( jotka voat tärkeitä pienten GTPaasien liittymisessä kalvoon).
Tämä väitöskirja  käsittää uusia havaintoja  statiinien vaikutuksesta mevalonaattitiehen ja tässä käytetään apuna C- elegans- matoa  malliorganismina.
STATIINIT ovat kolesterolia alentavia lääkeaineita, jotka estävät entsyymiä HMG-CoA-reduktaasi. Tämä entsyymi on  mevalonaattitiessäå syntetisoitumistahtia rajoittava  ja tällä tavalla statiinit  pystyvät rajoittamaan kolesterolin ja muiden tämän tien biomolekyylien syntetisoitumisia..
C. ELEGANS  toimii  erityisen tehokkaana mallina statiinin vaikutuksien  tutkimuksessa  mevalonaattitien ei-kolesterolisella  synteesilinjalla , koska tämä tie on madoissa hyvin konservoitunut muuten paitsi että niistä puuttuu ne entsyymit jotka tekevät kolesterolia.

Tutkijat luonnehtivat C-Elegans  mutantin, josta puuttui HMG-CoA-reduktaasi  ja he osoittivat, että sen fenotyypit  ilmentävät  kuin  statiinin  vaikutuksia C-elegansiin, mutta  vakavammassa muodossa.  Tutkijat myös osoittivat ,että proteiinin prenylaation estäminen on kriittinen seuraus mevalonaatitien estymisestä C- elegansissa. Koska tällä madolla  mevalonaatitien estäminen statiinilla  tai  entsyymin puuttuminen  (hmgr-1 mutaatio)  aiheuttaa kasvun jarruttuman ja steriliteetin, on suhteellisen helppoa seuloa esiin resistentit mutantit.

 Tutkijat seuloivat noin 150 000  mutagenisoitunutta haploidia genomia ja eristivät neljä statiiniresistenttiä mutanttia, joilla oli gain-of function- mutaatio atfs-1:ssä, joka on positiivinen säätelijä  mitokondriaaliselle  laskostumattomalle proteiinivastineelle (UPRmt). Kiinnostavaa oli että esi-indusoituminen käytettäessä ethidiumbromidia tai paraquatia  luonnolliseen (  wt) matoon tai imettäväissoluihin antoi myös  statiiniresitenssin.

Tutkijoitten havainnot viittavat siihen, että  statiiniresistenssi  mitokondriaalisen homeostaasin ylläpidolla on monissa lajeissa konservoitua. ja se statiinin  letaali vaikutus, mikä C. elegansissa havaitaan, aiheutuu primääristi proteiinien prenylaation huononemisesta , mikä johtaa mitokondriaaliseen  toiminnanhäiriöön (dysfunction) 

Tutkijat eristivät lisäksi statiiniresistentin mutantin, jossa oli osittainen toiminnanpuuttumismutaatio (partial loss-of-function mutation)  nduf-7:ssä, joka koodaa mitokondriaalisen elektroninkuljetusketjukompleksin (ETC-1) erästä avain komponenttia. Tämä mutaatio aktivoi myös UPRmt ja pitkittää elossapysymistä tuottamalla ROS.  Mielenkiintoista oli että geeni ced-4  vaaditaan C- elegansin  elämän pidentymiseen  nduf-77(et19) mutantissa  mutta ei UDPmt induktioon  tai statiiniresistenssiin. .
Avainsanat:   C. elegans, mevalonate, atfs-1, UPRmt, prenylation, nduf-7, ced-4. (Suom. lb 12.10.2015)





The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q (a component of the electron transport chain in mitochondria), dolichols (important for N-linked glycosylation of proteins) and isoprenoids (important for the membrane association of small GTPases). This thesis concerns novel findings about the effect of statin on the mevalonate pathway using C. elegans as a model organism. 
Statins are cholesterol-lowering drugs that inhibit HMG-CoA reductase, which is the rate- limiting enzyme of the mevalonate pathway, hence limiting the synthesis of cholesterol and other products from this pathway. C. elegans is a particularly powerful model to study the effect of statin on the non-cholesterol outputs of the mevalonate pathway because this pathway is well conserved in worms except for the key fact that the enzymes required for the synthesis of cholesterol are absent. 
 We characterized a hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and showed that its phenotypes recapitulate the effect of statin on C. elegans but in a more severe form. We also showed that inhibition of protein prenylation is a critical consequence of mevalonate pathway inhibition in C. elegans. Since inhibition of the mevalonate pathway, via statins or hmgr-1 mutation causes growth arrest and sterility, it is relatively easy to screen for resistant mutant.
 We screened ∼150,000 mutagenized haploid genomes and isolated four statin-resistant mutants that carried gain-of- function mutations in atfs-1, a positive regulator of the mitochondrial-unfolded protein response (UPRmt). Interestingly, preinduction of this response using ethidium bromide or paraquat in wild type worms or mammalian cells also conferred resistance to statin. Our observations suggest that statin resistance through maintenance of mitochondrial homeostasis is conserved among species, and that the lethal effect of statins in C. elegans are caused primarily through impaired protein prenylation leading to mitochondria dysfunction. We also isolated an additional statin-resistant mutant that carried a partial loss-of-function mutation in nduf-7, which encodes a key component of the mitochondrial transport chain complex1 (ETC-1). This mutation also activates the UPRmt and prolonged life span through production of ROS. Interestingly, the gene ced-4 is required for lifespan extension in the nduf-7(et19) mutant but not for UPRmt induction or resistance to statin.
 Keywords: C. elegans, mevalonate, atfs-1, UPRmt, prenylation, nduf-7, ced-4. ISBN: 978-91-628-9514-3
ISBN: 978-91-628-9514-3(printed version)
978-91-628-9513-6(electronic version)